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ABSTRACT

A fast parsimonious linear-programming-based algorithm for
training neural networks is proposed that suppresses redun-
dant features while using a minimal number of hidden units.
This is achieved by propagating sideways to newly added hid-
den units the task of separating successive groups of unclassi-
fied points. Computational results show an improvement of
26.53% and 19.76% in tenfold cross-validation test correct-
ness over a parsimonious perceptron on two publicly available
datasets.

We consider the problem of determining the weights and thresh-
olds of a neural network to discriminate between the elements
of two disjoint setsA andB in n-dimensional real spaceRn.
We present a parsimonious, linear-programming-based approach
to determine a minimal number of hidden units and weight vectors
with a minimal number of nonzero components so that the neural
network achieves a prescribed degree of accuracy on the training
data. Using tenfold cross-validation we compare neural networks
trained by this method with a parsimonious perceptron (i.e.trained
with a minimal number of nonzero weights) to discriminate be-
tween points inA andB.

A word about our notation. All vectors will be column vectors
unless transposed to a row vector by a superscriptT . The scalar
product of two vectorsx andy in Rn will be denoted byxT y. The
notationA 2 Rm�n will represent anm � n real matrixA, Ai
will denote theith row of A andAij will denote the element in
row i and columnj. A vector of ones of arbitrary dimension will
be denoted bye. The base of the natural logarithm will be denoted
by ", and fory 2 Rm, "�y will denote a vector inRm with com-
ponents"�yi; i = 1; : : : ;m. The notationarg minx2S f(x) will

denote the set of minimizers off(x) on the setS. For a vectorx 2 Rn, x� 2 Rn is the step function applied to each component
of x with (x�)i = 1 whenxi > 0 and(x�)i = 0 whenxi � 0,i = 0; : : : ; n. By a separating plane, with respect to two given
point setsA andB in Rn, we shall mean a plane that attempts
to separateRn into two half spaces such that each open halfspace
contains points mostly ofA orB. Alternatively, such a plane can
also be interpreted as a classical perceptron [3, 4]. Tenfold cross-
validation refers to the re-sampling method which successively re-
moves 10% of the available data for testing a separator generated
with the remaining 90%. For a point setA 2 Rn, card(A) will
denote the cardinality ofA, the number of points ofA.
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1. PARSIMONIOUS SIDE PROPAGATION

The Parsimonious Side Propagation algorithm trains a neural net-
work with a minimal number of hidden units, each unit utilizing a
minimal number of problem features, to classify ann-dimensional
input vector as belonging to either of two finite point setsA or B
in Rn. Them training points ofA are represented by the matrixA 2 Rm�n and thek training points ofB are represented by the
matrix B 2 Rk�n. We initially consider the setA [ B “unclas-
sified”. In the notation of our algorithm, we setA1 := A andB1 := B.

In training the hidden units, we begin with the entire train-
ing dataA [ B and compute a planefxjwTx = g utilizing a
minimum number of then problem features (i.e. setting as many
elements ofw 2 Rn to zero), while attempting to separateA fromB to the extent possible. The values ofw and 2 R defining
this separating plane are obtained by solving the followingopti-
mization problem by a linear-programming-based Successive Lin-
earization Algorithm [2, Algorithm 3.1]:(w; ; y; z; v) 2 arg minT (1��)(eT ym +eT zk )+�(n�eT "��v);T := 8><>:(w;; y; z; v) ������� �Aw+ e + e � y;Bw� e + e � z;y � 0; z � 0;�v � w � v 9>=>; :

(1)

The number of features utilized by the separating plane (i.e.
the number of nonzero elements ofw) is determined by the feature
suppression parameter� 2 [0; 1]. When� = 0, no features are
suppressed while attempting to separateA andB. When� = 1,w is totally suppressed to a useless zero solution. Thus� is taken
in the open interval(0; 1), while the smoothing parameter� is
typically set to 5, so that the smooth exponential1 � "��x ap-
proximates fairly accurately the step functionx� 2 R on the non-
negative real line. For� = 0, the error in separating the training
data is minimized, but our goal is not to produce a classifier with
minimum error on the the training data, but we wish to determine
the classifier (neural network) to perform with low error on future
unseen data. Classification error on unseen data, or generalization
error, is minimized for solutions of (1) with1 > � > 0 [2].

The separating plane computed by (1) attempts to putA in the
open halfspacefxjwTx > g and putB in the open halfspacefxjwTx < g and thus can be used to generate a parsimonious
perceptron classification function(wTx�)� which is 1 ifx 2 A
and 0 otherwise.
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Figure 1:Separating Planes: Since the separating planefx j wT x = g
does not satisfactorily separatateA (x) fromB (2), we generate two planes
parallel to it so thatfx j wTx > 1g contains mostly points ofA or B
(hereA) andfx j wT x < 0g contains mostly points ofA orB (hereB).
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Figure 2: Hidden Units from Separating Planes: The first two hidden
units of the neural network, corresponding to the planesfx j wT x = 1g
andfx j wT x = 0g respectively, have respective weight vectorsw1 =w, �w1 = �w, and thresholds11 = 1 & �10 = �0 . The third
hidden unit with weight vectorw2 and threshold21 corresponds to the
planefx j (w2)T x = 2g depicted in Figure 3.

If the single plane generated by (1) is able to discriminate be-
tweenA1 = A andB1 = B above a pre-defined acceptable ac-
curacy, we add one hidden unit to the neural network with weight
vectorw1 = w and threshold1 =  and proceed to training the
output unit.

From here on, to follow the indexing in the algorithm, we setw1 = w and1 = . If the accuracy tolerance is not achieved, we
use the solution(w1; 1) as a starting point to determine two open
halfspaces,H11 := fxj(w1)Tx > 11g andH10 := fxj(w1)Tx <10g, with 11 > 10 by moving the planewTx =  parallel to itself.
The value of11 is determined so that thepurityof the halfspaceH11
is above the accuracy tolerance and the number of points ofA1 [B1 in H11 is maximal (purity is defined below in Definition 1.1).
Similarly, the value of10 is determined so that the purity ofH10 is
above the accuracy tolerance and the number of points ofA1 [B1
is maximal. See Figure 1. (Such a construction was first proposed
in [1] using a different separation criterion that is determined by
the worst error, without feature suppression and letting the setsA
andB fall only in prescribed halfspaces.)

Definition 1.1 Purity. LetH be a halfspace. The purity ofHwith
respect toA andB is the ratio of the maximum number of points
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Figure 3:Three Separating Planes: With the points “correctly” classified
by the first 2 parallel planes discarded, we attempt to correctly classify the
remaining points with the separating planefx j (w2)T x = 2g.

ofA in H and the number of points ofB in H to the total number
of data points inH. Specifically:purity(H;A;B) := max(card(A\H); card(B \H))card(H\ (A [B)) :

(2)

The crux of the algorithm is this. Move the planewTx = 
parallel to itself to create two halfspacesH11 andH10 each contain-
ing mostly points ofA or B to a certain desired purity tolerance.
Note thatbothhalfspaces are allowed to contain mostly points of
thesameset, that isA andA, orB andB, ordifferentsetsA andB.
Once this is achieved we throw away the points contained in these
two halfspaces as being classified. The points that we still wish
to consider further (i.e. the training data remaining “unclassified”)
lie between the two halfspaces and are:A2 := A1 \ fxj(w1)Tx � 10 ; (w1)Tx � 11g; (3)B2 := B1 \ fxj(w1)Tx � 10 ; (w1)Tx � 11g:

We represent these “unclassified” points by the matricesA2
andB2. The setA2 [B2 are those points ofA[B on or between
the parallel planesfxj(w1)T x = 11g andfxj(w1)Tx = 10g that
have remained after the removal of the points ofA [ B on the
outside of these two planes. See Figures 1 and 3.

At this point we attempt to separate “unclassified” data by a
planefxj(w2)Tx = 2g obtained by solving (1) withA replaced
byA2, B replaced byB2, m replaced by the number of points inA2 andk replaced by the number of points inB2. See Figure 3.

We now add three hidden units to the neural network. See
Figure 2. The first hidden unit has weight vectorw1 and threshold11 . If this hidden unit “fires” for some input vector, this implies
that((w1)Tx�11 )� = 1 which implies that(w1)Tx > 11 , which
indicates thatx 2 H11. SinceH11 was constructed to be a “pure”
halfspace, we can correctly classifyx. The second hidden unit has
weight vector�w1 and threshold�10 . Similarly, if this hidden
unit “fires” for a given input vector, we conclude that this input
vector is inH10 and can be correctly classified. The third hidden
unit is added with weight vectorw2 and threshold2. If neither of
the first two hidden units “fire”, then this hidden unit will attempt
to correctly classify the given input vector.

At this stage we have either added one hidden unit, in which
case the plane separating the “unclassified” training data performs
with accuracy above our predefined tolerance. Otherwise, wehave
to determine two parallel planes defining two “pure” halfspaces,



remove the points “classified” by these two parallel planes,and
attempt to classify the remaining data by a single plane. In this
case, three hidden units are added to the neural network.

We now need to train the output unit of the neural network
constructed. If this resulting network performs with acceptable
accuracy on the training data, the Parsimonious Side Propagation
algorithm terminates. If not, the algorithm continues to iterate,
adding more hidden units.

We change notation and letfŵ1; : : : ; ŵhg andf̂1; : : : ; ̂hg
be theh hidden unit weight vectors and thresholds computed up
to this point. We define the output of hidden unit` for a given
input vectorx 2 Rn as((ŵ`)Tx� ̂`)�. Thus, theh hidden units
map an input vectorx 2 Rn to a vertex of the unit cube inRh.
The problem of training the output unit of the neural networkto
classifyA andB reduces to separating the vertices of the cube to
which points ofA are mapped from those vertices to whichB are
mapped [4]. We define them � h matrix of ones and and zerosHA 2 f0; 1gm�h where(HA)ij is the output of hidden unitj on
data pointi of A. Similarly, HB 2 f0; 1gk�h where(HB)ij is
the output of hidden unitj on data pointi of B.

We compute two candidate weight vectorsv1 andv2 and thresh-
olds�1 and�2 for the output unit and choose that which performs
with maximal accuracy. For the first, we calculate a separating
planefu 2 Rhj(v1)Tu = ~�1g to separate the points ofHA from
those ofHB. This plane is calculated by solving (1) with� = 0
(emphasizing separation) andA replaced byHA andB replaced
byHB. We then translate the plane (i.e. vary~�1) to minimize the
number of points ofHA andHB misclassified. This is a simple
linesearch in one dimension. Call the optimal value of this line-
search procedure�1. The first candidate output unit weight vector
is thenv1 2 Rh and threshold is�1 2 R.

The second candidate weight vectorv2 is preemptive [1] in the
sense that the hidden unit outputs are weighted according tothe
order in which they were calculated. This will ensure separation
of the training set by the successive planes in the order in which
they were generated. Herev2 is determined in the following way.

Algorithm 1.2 Preemptive Weighting for the Neural Network
Output Unit Givenh hidden units (h odd), determine theh ele-
ments of the weight vectorv2 of the output unit as follows.

0 Weight the last hidden unit which attempts to classify the
remaining “unclassified” points by 1,i.e. setv2h = 1.

1 Weight the remaining hidden units by the reverse order in
which they were calculated as follows:

(i) Setj = h� 1, k = 1 andp = (h� 1)� k.
Remark: j is a backward hidden unit counter,k is
a backward hidden unitpair counter except for the
last hidden unit which is counted as a singleton andp is the correct superscript on the datasets consid-
ered “unclassified” at a given iteration and on par-
allel planes computed from these datasets.

(ii) If the halfspacefx j (wp)T x < p0 g contains a ma-
jority of points ofAp, thenv2j = 2k . If the halfspacefx j (wp)Tx < p0g contains a majority of points ofBp, thenv2j = �2k. Setj = j � 1.

(iii) If the halfspacefx j (wp)T > p1g contains a ma-
jority of points ofAp, thenv2j = 2k . If the halfspacefx j (wp)T x > p1g contains a majority of points ofBp, thenv2j = �2k. Setj = j � 1, k = k + 1 andp = (h� 1)� k.

(iv) If j = 0, the weight vectorv has been defined. Ifj 6= 0, then go to step (ii).

Given this preemptive output weight vectorv2, threshold�2 is
determined so that the number of points ofHA andHB misclas-
sified by the planefu 2 Rhj(v2)Tu = �2g is minimized. This is
accomplished by the linesearch procedure mentioned earlier.

Now two classification functions based on the two candidate
output units are defined. We choose the candidate corresponding
to the classification function with best performance on the training
dataA[B (i.e. the one misclassifying the fewest points ofA[B).f1(x) := " hXi=1 v1h[(ŵh)Tx� ̂h]� � �1#� ; (4)f2(x) := " hXi=1 v2h[(ŵh)Tx� ̂h]� � �2#� :

If the best performer performs with accuracy above our pre-
defined tolerance, the algorithm terminates. If the tolerance is not
surpassed, then we proceed to the following post-processing step
prior to beginning another iteration.

The post-processing step consists of removing the output unit
and the last hidden unit computed from the neural network. The
next iteration begins with the plane corresponding to the last hid-
den unit computed to determine two parallel planes which define
“pure” halfspaces over the points “unclassified”. Then points are
removed which fall into these “pure” halfspaces and a candidate
separating plane is computed on the remaining the points. Candi-
date output units are then computed and performance of the classi-
fication functions (4) is determined. Iterations cease whenone of
the classification functions (4) performs acceptably. We summa-
rize the algorithm now.

Algorithm 1.3 ParsimoniousSide Propagation (PSP) Algorithm.
Choose� 2 [0; 1); � > 0 and choose� 2 [0; 1] to be an accuracy
tolerance.

0. Initialization. SetA1 = A, A1 = A, B1 = B, B1 = B,j = 1 and the number of hidden unitsh = 0. Compute(w1; 1) by solving (1).

1. Determine either one or three hidden units.

(i) (“Final” Hidden Unit) If the plane (wj)Tx = j
achieves separation correctnessgreater than or equal
to � with respect toAj andBj , add one hidden unit
with weight vectorwj and thresholdj, seth =h+ 1. Go to 2.

(ii) (Hidden Unit Pair + Candidate “Final” Unit)

(a) DetermineHj1 := fxj(wj)T x > j1g so thatpurity(Hj ;Aj;Bj) � � and the number of
data points inHj1 is maximal.

(b) Similarly determineHj0 := fxj(wj)Tx < 10g.
(c) SetAj+1 andBj+1 to be the points considered

“unclassified”, as in (3), and construct the ma-
tricesAj+1 andBj+1.

(d) Calculate the candidate last hidden unit by solv-
ing (1) with A replaced byAj+1, B replaced
byBj+1, m replaced by the number of rows ofAj+1 andk replaced by the number of rows ofBj+1.
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Figure 4:Tenfold cross-validation correctness versus parsimony parame-
ter� for the WPBC dataset.

Seth = h+ 3. Go to 2.

2. Compute weights and threshold of the output unit.De-
note the neural network weight vectors and thresholds of
theh hidden units as(ŵ1; : : : ; ŵh) and(̂1; : : : ; ̂h).

(i) Determine them� h matrixHA of hidden unit out-
puts onA and thek � h matrixHB of hidden unit
outputs onB.

(ii) (Candidate Output Unit 1). Solve (1) withA replaced
byHA andB replaced byHB to determinev1; ~�1.
Determine�1 so that the number of points ofHA andHB misclassified by the planefu 2 Rhj(v1)Tu =�1g is minimized.

(iii) (Candidate Output Unit 2). Determine preemptive
output weight vectorv2 by Algorithm 1.2. Determine�2 so that the number of points ofHA andHB mis-
classified by the planefu 2 Rhj(v2)T u = �2g is
minimized.

3. Stopping Criterion.

(i) LetfBest(x)be the classification function, from among
those in (4), performing best over the entire training
dataA[B.

(ii) If the correctness offBest(x) is greater than�, stop.

(iii) If the correctness offBest(x) does not surpass�, setj = j + 1 andh = h� 1 and go to 1.

2. COMPUTATIONAL RESULTS

The Wisconsin Prognostic Breast Cancer (WPBC) and the Iono-
sphere problems [5] were used as test problems. The 32-feature
WPBC problem has 28 points in category one of breast cancer
patients for which the cancer recurred within 24 months and cate-
gory two of 119 patients for which the cancer did not recur within
24 months. The 34-feature Ionosphere problem has 225 pointsof
radar returns from the ionosphere in one category and 126 points

in the other. For the WPBC dataset normalized to have 0 mean and
1 standard deviation, the average tenfold cross-validation training
set correctness for the Parsimonious Perceptron (� = 0:2) was
68.71% and test set correctness was 66.05%. This perceptronuti-
lized an average of 2 of the 32 WPBC features. The average ten-
fold cross-validation training set correctness for the Parsimonious
Side Propagation neural networks was 92.44% (� = 0:2) and test
set correctness was 83.57%, an improvement of 26.53% over the
Parsimonious Perceptron test set correctness. These neural net-
works utilized an average of 3.78 of the WPBC problem features
and had, on average, 5 hidden units. These results are depicted in
Figure 4. For the Ionosphere dataset, the average tenfold cross-
validation training set correctness for the Parsimonious Perceptron
(� = 0:3) was 77.23% and test set correctness was 73.24%. This
perceptron utilized an average of 2.1 of the 34 Ionosphere features.
The average tenfold cross-validation training set correctness for
the Parsimonious Side Propagation neural networks was 90.72%
(� = 0:3) and test set correctness was 87.71%, an improvement
of 19.76% over the Parsimonious Perceptron test set correctness.
These neural networks utilized an average of 9.1 of the Ionosphere
features and had, on average, 6.5 hidden units. A graph similar to
Figure 4 for this dataset was omitted for lack of space.

3. SUMMARY & CONCLUSION

We have proposed and implemented a fast linear-programming-
based algorithm in which the task of separating successive groups
of unclassified points is propagated sideways along hidden units
until an overall separation accuracy on the training set is reached.
Features deemed unnecessary by the mathematical program are re-
moved by each hidden unit or unit-pair that is added. The economy
in the use of available features and the minimal number of hidden
units added to achieve an acceptable accuracy leads to a parsimo-
nious neural network that appears to generalize well on unseen
data.
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