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ABSTRACT

A fast parsimonious linear-programming-based algorithm br
training neural networks is proposed that suppresses redun
dant features while using a minimal number of hidden units.
This is achieved by propagating sideways to newly added hid-
den units the task of separating successive groups of unckis
fied points. Computational results show an improvement of
26.53% and 19.76% in tenfold cross-validation test correct
ness over a parsimonious perceptron on two publicly availale
datasets.

We consider the problem of determining the weights and thres
olds of a neural network to discriminate between the element
of two disjoint sets4 and B in n-dimensional real spacE”.

We present a parsimonious, linear-programming-basecaphpr

to determine a minimal number of hidden units and weightossct
with a minimal humber of honzero components so that the heura
network achieves a prescribed degree of accuracy on tmangai
data. Using tenfold cross-validation we compare neuralords
trained by this method with a parsimonious perceptrontfiséned
with a minimal number of nonzero weights) to discriminate be
tween points in4 andB.

A word about our notation. All vectors will be column vectors
unless transposed to a row vector by a supersgtipThe scalar
product of two vectors andy in R™ will be denoted by:Ty. The
notationA € R™*™ will represent ann x n real matrix A, A;
will denote thesth row of A and A;; will denote the element in
row ¢ and columry. A vector of ones of arbitrary dimension will
be denoted by. The base of the natural logarithm will be denoted
by e, and fory € R™, ¢~¥ will denote a vector inR"™ with com-
ponentss ™%, 1,...,m. The notationarg IIIGII’SI () will

denote the set of minimizers ¢f(x) on the setS. For a vector

x € R", . € R" is the step function applied to each component
of z with (z.); = 1 whenz; > 0 and(z.); = 0 whenz; <0,

1 = 0,...,n. By a separating plane, with respect to two given
point sets4 and B in R™, we shall mean a plane that attempts

1. PARSIMONIOUS SIDE PROPAGATION

The Parsimonious Side Propagation algorithm trains a heeta
work with a minimal number of hidden units, each unit utiligia
minimal number of problem features, to classifyradimensional
input vector as belonging to either of two finite point sdter B
in R™. Them training points ofA are represented by the matrix
A € R™*™ and thek training points ofB3 are represented by the
matrix B € R**". We initially consider the sel U B “unclas-
sified”. In the notation of our algorithm, we sgt' := A and
B! .= B.

In training the hidden units, we begin with the entire train-
ing data.4 U B and compute a plangz|w”z = ~} utilizing a
minimum number of the: problem features (i.e. setting as many
elements ofv € R™ to zero), while attempting to separaddrom
B to the extent possible. The valueswfand~y € R defining
this separating plane are obtained by solving the followdpg-
mization problem by a linear-programming-based Succe4siv
earization Algorithm [2, Algorithm 3.1]:
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The number of features utilized by the separating plane (i.e
the number of nonzero elementswefis determined by the feature
suppression parametgre [0,1]. WhenX = 0, no features are
suppressed while attempting to sepatdtand3. WhenX = 1,

w is totally suppressed to a useless zero solution. Thigdaken
in the open interval0, 1), while the smoothing parameter is
typically set to 5, so that the smooth exponentiat ¢~ ap-

to separat&t™ into two half spaces such that each open halfspace Proximates fairly accurately the step function € R on the non-

contains points mostly ofl or B. Alternatively, such a plane can
also be interpreted as a classical perceptron [3, 4]. Termfass-
validation refers to the re-sampling method which sucwegsie-
moves 10% of the available data for testing a separator geter
with the remaining 90%. For a point sdt € R", card) will
denote the cardinality ofl, the number of points ofl.
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negative real line. Fok = 0, the error in separating the training
data is minimized, but our goal is not to produce a classifidr w
minimum error on the the training data, but we wish to detaemi
the classifier (neural network) to perform with low error otuire
unseen data. Classification error on unseen data, or gza¢icai
error, is minimized for solutions of (1) with > X > 0 [2].

The separating plane computed by (1) attempts todpintthe
open halfspacgz|w”x > ~} and putB in the open halfspace
{z|wTx < 4} and thus can be used to generate a parsimonious
perceptron classification functige ™ — ), whichis 1ifx € A
and O otherwise.
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Figure 1:Separating Planes: Since the separating planpw” = = ~}
does not satisfactorily separatat€x) from B (O), we generate two planes
parallel to it so tha{s | Tz > ~;} contains mostly points oft or 3
(hereA) and{x | wT = < ~} contains mostly points oft or B (here).

X

Figure 2: Hidden Units from Separating Planes: The first two hidden
units of the neural network, corresponding to the plafsesw” > = 4!}
and{z | w”z = ~4°} respectively, have respective weight vectars =

w, —w! = —w, and thresholds} = ~; & —v} = —~g. The third
hidden unit with weight vectow? and thresholdy? corresponds to the
plane{z | (w?)T2 = ~2} depicted in Figure 3.

If the single plane generated by (1) is able to discriminate b
tweenA' = A4 andB' = B above a pre-defined acceptable ac-
curacy, we add one hidden unit to the neural network with tfeig
vectorw!' = w and threshold,' = ~ and proceed to training the
output unit.

From here on, to follow the indexing in the algorithm, we set
w' = wandy' = ~. Ifthe accuracy tolerance is not achieved, we
use the solutiow®, v') as a starting point to determine two open
halfspacest] := {z|(w") 2 > v1} andH§ = {z|(v")T> <
v}, with v{ > ¢ by moving the plane™x = ~ parallel to itself.
The value ofy{ is determined so that thgurity of the halfspacé{i
is above the accuracy tolerance and the number of points' af
B in H} is maximal (purity is defined below in Definition 1.1).
Similarly, the value of is determined so that the purity &f is
above the accuracy tolerance and the number of points of B*
is maximal. See Figure 1. (Such a construction was first rego
in [1] using a different separation criterion that is deterad by
the worst error, without feature suppression and lettirgstts4
and2 fall only in prescribed halfspaces.)

Definition 1.1 Purity. Let? be a halfspace. The purity & with
respecttad and B is the ratio of the maximum number of points

whx = y:ll

(wl)Tx = yé

Figure 3:Three Separating Planes: With the points “correctly” dfaess
by the first 2 parallel planes discarded, we attempt to ctyretassify the
remaining points with the separating plafe | (w?)7x = 42}.

of A in H and the number of points & in # to the total number
of data points irH{. Specifically:

max(card(ANH), card(B N H))
card( N (AU B))

purity(H, A, B) := .
(2)

The crux of the algorithm is this. Move the plan€ z = ~
parallel to itself to create two halfspack$ and#{ each contain-
ing mostly points of4 or B to a certain desired purity tolerance.
Note thatboth halfspaces are allowed to contain mostly points of
thesameset, thatis4 andA, or B andB, ordifferentsets4 andB.
Once this is achieved we throw away the points containedaseth
two halfspaces as being classified. The points that we gghw
to consider further (i.e. the training data remaining “@sslfied”)
lie between the two halfspaces and are:

A* = A'n {x|(w1)Tx > ", (wl)Tx < 'yll},
B® :=B' n{al(w') s > 7, (w") 'z <m}.

®)

We represent these “unclassified” points by the matri¢és
andB?. The setd? U B? are those points ofl U B on or between
the parallel planeéz|(w')”» = v{} and{z|(w')"z = v4} that
have remained after the removal of the points4fs B on the
outside of these two planes. See Figures 1 and 3.

At this point we attempt to separate “unclassified” data by a
plane{s|(w?)"x = 4*} obtained by solving (1) with! replaced
by A%, B replaced byB?, m replaced by the number of points in
A? andk replaced by the number of points&f. See Figure 3.

We now add three hidden units to the neural network. See
Figure 2. The first hidden unit has weight vecior and threshold
~i. If this hidden unit “fires” for some input vector, this imes
that((w")" & —~1 )« = 1 whichimplies thatw')"= > 41, which
indicates that: € . SinceH| was constructed to be a “pure”
halfspace, we can correctly classify The second hidden unit has
weight vector—w' and threshold-~¢. Similarly, if this hidden
unit “fires” for a given input vector, we conclude that thigpin
vector is in§ and can be correctly classified. The third hidden
unitis added with weight vectas® and threshold?. If neither of
the first two hidden units “fire”, then this hidden unit wiltampt
to correctly classify the given input vector.

At this stage we have either added one hidden unit, in which
case the plane separating the “unclassified” training dattapns
with accuracy above our predefined tolerance. Otherwiséave
to determine two parallel planes defining two “pure” halisgs,



remove the points “classified” by these two parallel plarzes
attempt to classify the remaining data by a single plane.his t
case, three hidden units are added to the neural network.

We now need to train the output unit of the neural network
constructed. If this resulting network performs with adedye
accuracy on the training data, the Parsimonious Side Patioag
algorithm terminates. If not, the algorithm continues trate,
adding more hidden units.

We change notation and Igt*, ... , %"} and{3*,... , %"}
be theh hidden unit weight vectors and thresholds computed up
to this point. We define the output of hidden usifor a given
input vectorr € R™ as((@*)"x — 4%).. Thus, theh hidden units
map an input vector € R™ to a vertex of the unit cube iR".
The problem of training the output unit of the neural netwtark
classify.4 andB reduces to separating the vertices of the cube to
which points of4 are mapped from those vertices to whiglare
mapped [4]. We define the: x h matrix of ones and and zeros
Ha € {0,1}™*" where(H 4);; is the output of hidden unjt on
data pointi of [A. Similarly, Hz € {0, 1}**" where(Hg);; is
the output of hidden unjf on data point of B.

We compute two candidate weight vectotsandv?® and thresh-
olds7! andr? for the output unit and choose that which performs
with maximal accuracy. For the first, we calculate a sepagati
plane{u € R"|(+")Tu = 7'} to separate the points &f 4 from
those ofHz. This plane is calculated by solving (1) with= 0
(emphasizing separation) andreplaced byH 4 and B replaced
by Hp. We then translate the plane (i.e. vary) to minimize the
number of points off 4 and Hz misclassified. This is a simple
linesearch in one dimension. Call the optimal value of this-
search procedure' . The first candidate output unit weight vector
is thenv' € R" and threshold is’ € R.

The second candidate weight vectdris preemptive [1] in the
sense that the hidden unit outputs are weighted accorditigeto
order in which they were calculated. This will ensure sefiana
of the training set by the successive planes in the order ichwh
they were generated. Hexé is determined in the following way.

Algorithm 1.2 Preemptive Weighting for the Neural Network
Output Unit Givenh hidden units & odd), determine thé ele-
ments of the weight vectoF of the output unit as follows.

0 Weight the last hidden unit which attempts to classify the
remaining “unclassified” points by 1,e. setv}, = 1.

1 Weight the remaining hidden units by the reverse order in
which they were calculated as follows:

() Sety=h—-1,k=1andp=(h—1)— k.

Remark: j is a backward hidden unit countéek, is

a backward hidden unipair counter except for the

last hidden unit which is counted as a singleton and

p is the correct superscript on the datasets consid-

ered “unclassified” at a given iteration and on par-

allel planes computed from these datasets.

If the halfspace{z | (w?)"z < v} contains a ma-

jority of points ofAF, thenvf = 2" If the halfspace

{z | (wP)Tz < ~&} contains a majority of points of

B?, thenv? = —2%. Setj = j — 1.

(iii) If the halfspace{z | (w?)” > 4P} contains a ma-
jority of points ofA?, thenvf = 2%, If the halfspace
{z | (wP)T& >~} contains a majority of points of
BP, thenv? = —2*. Setj = j— 1,k = k+ 1 and
p=(h—1)—k.

(i)

(iv) If 5 = 0, the weight vectopr has been defined. If
7 # 0, then go to step (ii).

Given this preemptive output weight vecidr, thresholdr? is
determined so that the number of pointsfdf and H z misclas-
sified by the plandu € R"|(v?)Tu = 72} is minimized. This is
accomplished by the linesearch procedure mentioned earlie

Now two classification functions based on the two candidate
output units are defined. We choose the candidate corresgpnd
to the classification function with best performance on thiming
datad U B (i.e. the one misclassifying the fewest pointstif) 3).

filz) = [Z vpl(@™) o — 4" - ] : @)

=1

fo(z) = |:Z Ui[(d)h)Tx — 'Ayh]* — 7'2:| .

=1

If the best performer performs with accuracy above our pre-
defined tolerance, the algorithm terminates. If the tolegas not
surpassed, then we proceed to the following post-procgssap
prior to beginning another iteration.

The post-processing step consists of removing the outgut un
and the last hidden unit computed from the neural networle Th
next iteration begins with the plane corresponding to tise Héd-
den unit computed to determine two parallel planes whicmeefi
“pure” halfspaces over the points “unclassified”. Then poare
removed which fall into these “pure” halfspaces and a caatdid
separating plane is computed on the remaining the pointsdi€a
date output units are then computed and performance ofalssiel
fication functions (4) is determined. lterations cease wire of
the classification functions (4) performs acceptably. Warsa-
rize the algorithm now.

Algorithm 1.3 Parsimonious Side Propagation (PSP) Algoritm.
Choose\ € [0,1), a > 0and choose € [0, 1] to be an accuracy
tolerance.

0. Initialization. Setd! = A, A! = A, B!
7 = 1 and the number of hidden units
(w', 4"} by solving (1).

1. Determine either one or three hidden units.

() (“Final” Hidden Unit) If the plane (w’)Tz = 4
achieves separation correctness greaterthan or equal
to x with respecttad’ and B, add one hidden unit
with weight vectorw’ and thresholdy’, seth
h+1.Goto2.

(i) (Hidden Unit Pair + Candidate “Final” Unit)

(a) DetermineH? := {z|(w’)Tx > +I} so that
purity(H’, A’, B’) > « and the number of
data points in#] is maximal.

(b) Similarly determing}, := {z|(w’)Tz < 7¢}.

(c) Setd’*! andB’T! to be the points considered
“unclassified”, as in (3), and construct the ma-
trices AVt and B!,

(d) Calculate the candidate last hidden unit by solv-
ing (1) with A replaced byA’*!, B replaced
by B+, m replaced by the number of rows of

A?*! andk replaced by the number of rows of
Bt

B, B' = B,
0. Compute
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Figure 4:Tenfold cross-validation correctness versus parsimorgrpa-
ter A for the WPBC dataset.

Seth = h + 3. Goto 2.

2. Compute weights and threshold of the output unit. De-
note the neural network weight vectors and thresholds of
theh hidden units ag:?, ... ,»") and(3*,... ,3™).

(i) Determine then x h matrix H 4 of hidden unit out-
puts onA and thek x h matrix Hp of hidden unit
outputs oni3.

(ii) (Candidate Output Unit 1). Solve (1) with replaced
by H. and B replaced byH 5 to determiney!, 71,
Determiner! so that the number of points &f, and
H g misclassified by the planf: € R"|(v')"u =
7'} is minimized.

(iii) (Candidate Output Unit 2). Determine preemptive
output weight vectos® by Algorithm 1.2. Determine
72 so that the number of points éf, and Hp mis-
classified by the plan¢u € R"|(v*)"u = 7%} is
minimized.

3. Stopping Criterion.

(i) Let fees{x) be the classification function, from among
those in (4), performing best over the entire training
data.A U B.

(i) If the correctness ofges( ) is greater thanx, stop.

(i) If the correctness offses{x) does not surpass, set
j=j+landh=h—1landgotol.

2. COMPUTATIONAL RESULTS

The Wisconsin Prognostic Breast Cancer (WPBC) and the lono-
sphere problems [5] were used as test problems. The 32deatu
WPBC problem has 28 points in category one of breast cancer
patients for which the cancer recurred within 24 months axtd-c
gory two of 119 patients for which the cancer did not recuhimit

24 months. The 34-feature lonosphere problem has 225 pafints
radar returns from the ionosphere in one category and 1289oi

in the other. For the WPBC dataset normalized to have 0 meén an
1 standard deviation, the average tenfold cross-validataning

set correctness for the Parsimonious Percepthor=( 0.2) was
68.71% and test set correctness was 66.05%. This percepiron
lized an average of 2 of the 32 WPBC features. The average ten-
fold cross-validation training set correctness for thesiPaonious
Side Propagation neural networks was 92.44%=(0.2) and test

set correctness was 83.57%, an improvement of 26.53% oger th
Parsimonious Perceptron test set correctness. Thesd metra
works utilized an average of 3.78 of the WPBC problem feature
and had, on average, 5 hidden units. These results are el pict
Figure 4. For the lonosphere dataset, the average tenfoss-cr
validation training set correctness for the Parsimonicrsé&ptron

(A = 0.3) was 77.23% and test set correctness was 73.24%. This
perceptron utilized an average of 2.1 of the 34 lonosphetefes.

The average tenfold cross-validation training set coness for

the Parsimonious Side Propagation neural networks wa%0.7

(A = 0.3) and test set correctness was 87.71%, an improvement
of 19.76% over the Parsimonious Perceptron test set coasst
These neural networks utilized an average of 9.1 of the lphex®
features and had, on average, 6.5 hidden units. A graphesitoil
Figure 4 for this dataset was omitted for lack of space.

3. SUMMARY & CONCLUSION

We have proposed and implemented a fast linear-programming
based algorithm in which the task of separating successitgg

of unclassified points is propagated sideways along hidadés u
until an overall separation accuracy on the training setéshed.
Features deemed unnecessary by the mathematical prograen ar
moved by each hidden unit or unit-pair that is added. The @zgyn

in the use of available features and the minimal number afémd
units added to achieve an acceptable accuracy leads toimpars
nious neural network that appears to generalize well onamse
data.
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